
DCC Decoder Programming made easier

Decoder Pro How-To

Brian Pickering First Presented 02/11/2012 PNW 4D HO Modular Group Breakfast

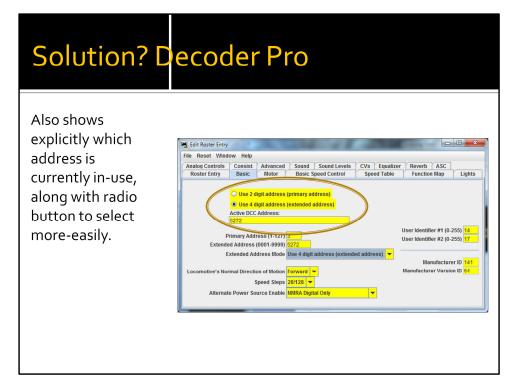
Some things in Decoders are simple!

For example, Addresses 2-Digit or 4-Digit numbers, right? Wait a minute...

RP 9.2.2: http://www.nmra.org/standards/DCC/standards_rps/rp922.html RP 9.2.3: http://www.nmra.org/standards/DCC/standards_rps/rp923.html

Addresses redux

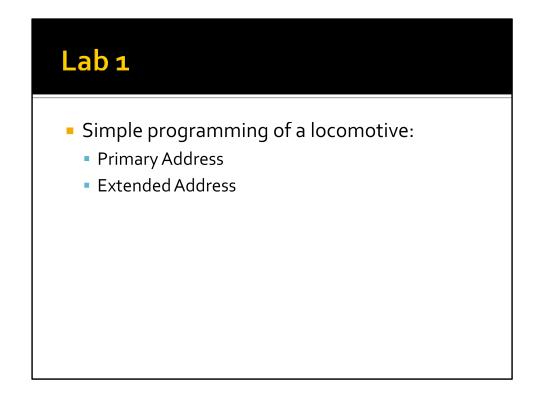

Hmmm... maybe these things aren't so simple after all...


There are at least five CVs associated with addresses:

- 1. CV1 Primary Address
- 2. CV17 & CV18 Secondary Address
- 3. CV29 Contains a "switch" telling decoder which to use
- 4. CV19 Consist Address

"Most of us can read the writing on the wall; we just assume it's addressed to someone else."

Solution? Decoder Pro



Decoding CVs with Decoder Pro...

Here, we can also see the actual values that a "behind" that tab:			ulator <u>E</u> dit <u>H</u>	įelp						- 5	272
 CV1 = 3 (Primary Address) 					-(Grade	[[\supset
 CV17 & CV18 together: 		ODe	grees (Radia	ans (Greet	MC	MR	MS	M	M-
1. CV18 is simple: 152 What does 152 have t			Inv	In	(+	CE	C	±	V
the expected value of 5272? Patience @		Int	sinh	sin	<i>x</i> ²	n!	7	8	9	/	%
2. CV17 is more complex:		dms	cosh	cos	<i>x^y</i>	∛x	4	5	6	*	1/x
 Definition: CV#17 contains the most significant bit 	b	π	tanh	tan	x ³	∛ x	1	2	3	-	
byte address and must have a value between a 11100111, inclusive, in order for this two byte add So What does it mean?	1	F-E	Exp	Mod	log	10*		0		+	
2. First, subtract 192 (that's the equivalent of binary 1100	000	o).				13		48	F	From fil	9
3. Then multiply by 256						14		3	F	From fil	e
4. And add to CV18 to get 5272						15		0	F	From fil	e
					C	16		°	-	From fil	-
3. It's as easy as π						17		212		From file	
 Actually, I find it more reminiscent of Tom Leh "New Math". 	rei	er's song,				18		152 Fro		From fil	e

Down to brass tacks!

 But, the whole point is, you don't NEED to do that New Math... Decoder Pro does it all for you.

Lab 1a – short address vs. extended address

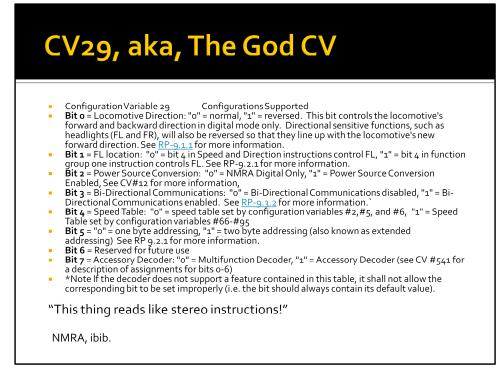
Put on UP 5465, and try to Identify. Note that will not only identify TYPE of decoder, but actual ROSTER entry (if one matches).

Show that Primary = 105, and set to use Primary address.

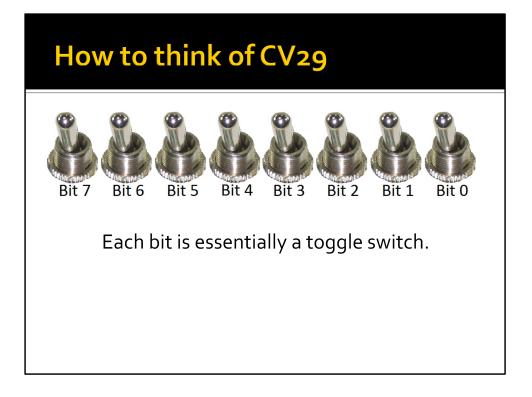
Make sure that Extended = 105, and set to use Extended. Write Changes.

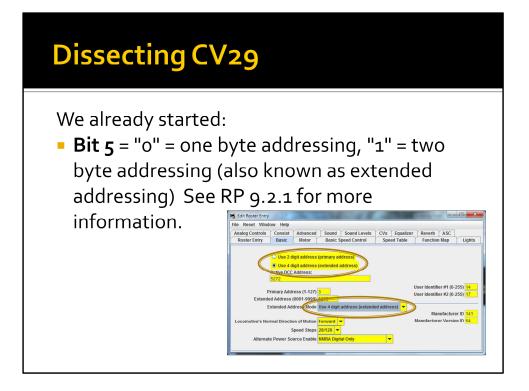
Will NOT respond to throttle.

Change back to Primary address, and WILL respond to throttle.

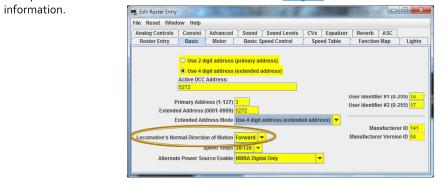

Lab 1b – Extended address

Put on UP 5465 (previously programmed as something else that doesn't exist in roster). Will find DECODER TYPE, but not ROSTER ENTRY (of course). Look at CV 17, 18, and 29 29: 18, so Bit 5 is off (value = 00010010)


Program in Extended = 5465; CV17 = 213, CV18 = 89, CV29 = 00110010 = 50


Definitions, first of all

- Bit = "binary digit". Just as "4" is one digit of 3.1415927, "1" is one digit of "10110110"... although perhaps it's not as easy to tell which.
- 1 = Set = On
- o = Clear = Off
 - Sorry, partly it's different people writing the descriptions, partly engineers who feel that if one description is good, two or three must be better.


RP 9.1.1: http://www.nmra.org/standards/DCC/standards_rps/rp911.html RP 9.3.2: http://www.nmra.org/standards/DCC/standards_rps/rp932.html

Knowing your forward from your back...

Bit o = Locomotive Direction: "o" = normal, "1" = reversed. This bit controls the locomotive's forward and backward direction in digital mode only. Directional sensitive functions, such as headlights (FL and FR), will also be reversed so that they line up with the locomotive's new forward direction. See <u>RP-9.1.1</u> for more

Bit of Confusion

Bit 1 = FL location: "o" = bit 4 in Speed and Direction instructions control FL, "1" = bit 4 in function group one instruction controls FL. See RP-9.2.1 for more information.

- Huh?!
- For the most-part, this denotes 14-step vs. 28/128step speed control.
- If this bit is off, then forward light behavior changes, plus the engineer has less-precise control.
- Most people just leave this bit set on. ^(C)

To Digital, or Not to Digital...

Bit 2 = Power Source Conversion: "o" = NMRA Digital Only, "1" = Power Source Conversion Enabled, See CV#12 for more information.

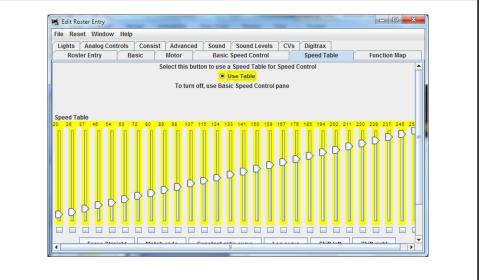
 If this bit is set, CV12 contains a description of what is the alternate power source. http://www.nmra.org/standards/DCC/standar ds_rps/rp922.html#_ftn2

Please Talk to Me

Bit 3 = Bi-Directional Communications: "o" = Bi-Directional Communications disabled, "1" = Bi-Directional Communications enabled. See <u>RP-</u> <u>9.3.2</u> for more information.`

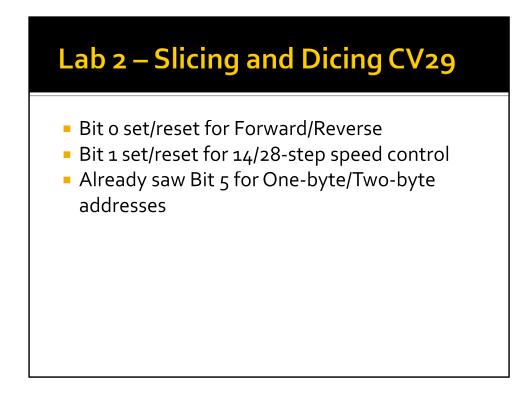
 http://www.nmra.org/standards/DCC/standar ds_rps/rp932.html

There is more to life than simply increasing its speed*


Bit 4 = Speed Table: "o" = speed table set by configuration variables #2,#5, and #6, "1" = Speed Table set by configuration variables #66-#95

- Oh great, refers to STILL MORE CVs. ☺
- Simple version:
 - CV 2, 5, and 6 give a low, mid, and high matching.
 - CV 66-95 allow for far more-granular matching.

*Mahatma Ghandi


and Car	trolc a oa	
Jeed Col	ntrols 101	
🛤 Edit Roster Entry		
File Reset Window Help		
Lights Analog Controls Consis Roster Entry Basic	st Advanced Sound Sound Levels CVs Motor Basic Speed Control	Digitrax Speed Table Function Map
	Select this button to use settings shown belon Use Vstart, Vmid, Vhigh To turn off, use Speed Table pane	w
	Start Volts 15	

Speed Controls 501 (Yeah, a graduate level course!)

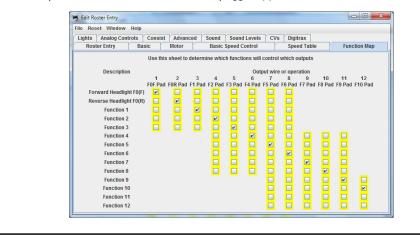
Motor or Accessory

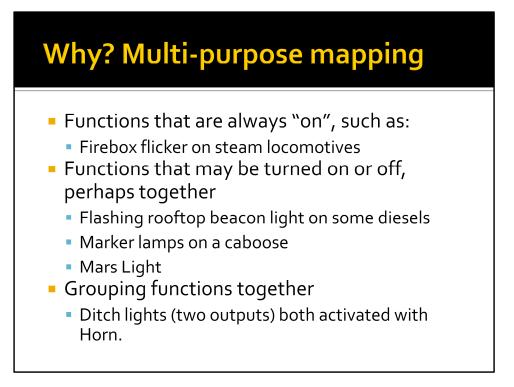
- Bit 7 = Accessory Decoder: "o" = Multifunction Decoder, "1" = Accessory Decoder (see CV #541 for a description of assignments for bits o-6)
- Yes, that's right, if it's an Accessory decoder, ALL the other bits get redefined.
- It's enough to drive you to drink... or perhaps DC.

Go to identify MILW-18B; note that it is set to respond to address = 18, so brings up MILW-18A (I'm using Simple consisting, more about this later). Choose MILW-18B. Basic tab – normal direction = Reversed.

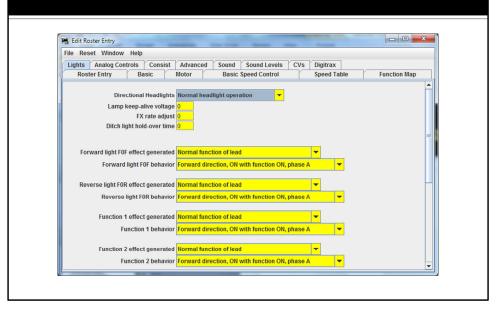
CV29 = 19; 00010011; respectively, set bits = [Use the speed table], [28-step speed control], [Reversed]

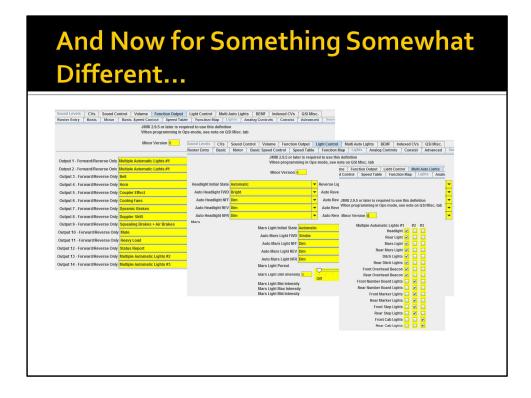
Set normal direction = Forward, and go back. CV29 = 18.


Set 14-step speed control. CV29 = 16

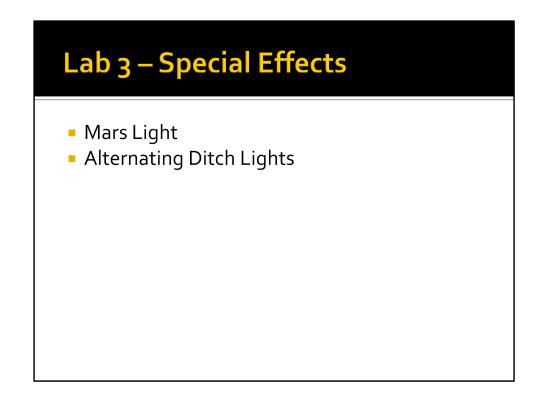

Function Maps and Lighting

- Configuration Variables 33-46 Output Locations 1-14 for Functions FL(f), FL(r), and F1-F12
- Contains a matrix indication of which function inputs control which *Digital Decoder* outputs. This allows the user to customize which outputs are controlled by which input commands. The outputs that Function FL(f) controls are indicated in CV #33, FL(r) in CV#34, F1 in CV #35, to F12 in CV#46. A value of "1" in each bit location indicates that the function controls that output. This allows a single function to control multiple outputs, or the same output to be controlled by multiple functions. CVs 33-37 control outputs 1-8. CVs 38-42 control outputs 4-11 CVs 43-46 control outputs 7-14. The defaults is that FL(f) controls output 1, FL(r) controls output 2, F1 controls output 3 to F12 controls output 14. The lowest numbered output is in the LSB of the CV, as shown in the table below.




Maps the Functions (basically, the buttons you would press on the Throttle) to the Outputs. Shown are the defaults for my T₅₅ ES₄₄AC.

Special Effects – wizardry!



The problem is two-fold-

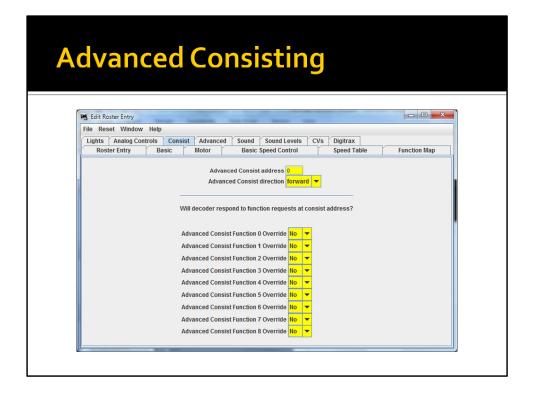
- 1) First, each brand of decoder (this is a P2K GP-7 with QSI sound) implements special features in their own way,
- 2) The people who implement the definition files don't always appear to be completely consistent with each other.
- That's one of the things to remember about Decoder Pro... it may be written by professionals and skilled amateurs, but there is NOT a single architectural vision about it (similar to what we've seen with NMRA-NET, unfortunately). I've heard some complaints about DecoderPro being confusing, or difficult to learn, and I suspect that this is one of the big reasons.

Making magic happen

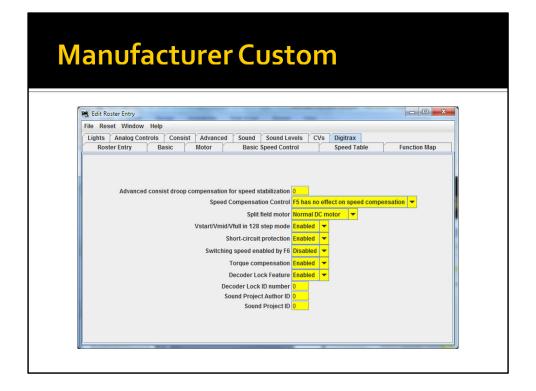
- Effects like:
 - Mars Lights
 - Firebox flicker
 - Blinking warning light
 - Alternating ditch lights

MILW-18B has a Mars Light- use for different effects. UP-5465 has (I believe) twin ditch lights that can alternate.

All Together Now!


- Consisting allows us to run multiple locomotives using a single address.
- Basic Consisting just program multiple locomotives with the same address
- 2. Universal Consisting made up and broken within the Command Station
- 3. Advanced Consisting programmed in CVs

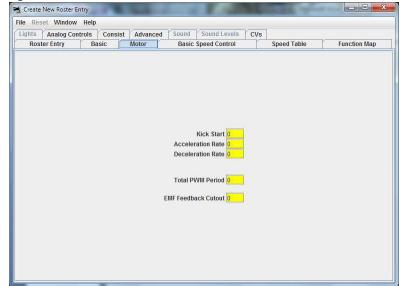
http://www.tonystrains.com/technews/consisting-guide.htm

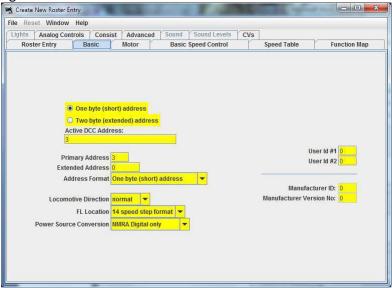

Basic Consisting – simple, but inflexible

Universal Consisting – Command Station remembers the consist; sends one packet per locomotive in the consist, so can flood the net with packets. Flexible. Advanced Consisting – programmed in CV19. Can bring consist from one system to another, but requires programming CVs to change.

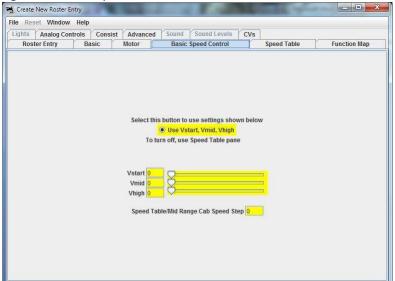
NCE variation: When setting up, we get two options- Old and New. OLD = pure Universal consisting, maximum four locomotives. NEW = interesting!... it combines Universal Consisting (using the address of the lead locomotive) with Advanced Consisting for all other locomotives in the consist. Sends only two packets (one for lead address, one for consist address) for consists. Note that breaking the Universal Consist still leaves the locomotives (APART from the lead) programmed to the Advanced Consist address.

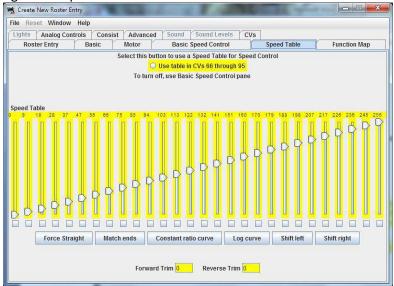
Note that we can make some function behavior changes (such as, turning off FO(F/R) for trailing units).




Figure 1 – Roster Entry	
-------------------------	--

hts Analog Con	trols Consist	Advanc	ed Sound	Sound Levels	CVs		
Roster Entry	Basic	Motor		Speed Control		Speed Table	Function Map
	ID: Road Name: Road Number: Manufacturer: Owner: Model: DCC Address: Throttle Speed Li Comment: Decoder Family: Decoder Model: Decoder Comme Filename: Date Modified:	nt:		rd CV definitions rd CV definitions rd CV definitions	aults		


Figure 3 – Motor


Figure 2 – Basic

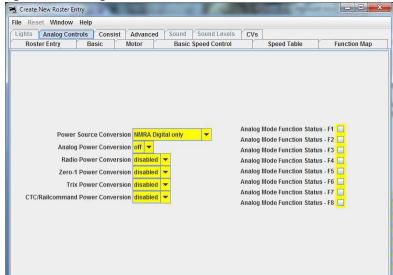

Figure 4 – Basic Speed Control

Figure 5 – Speed Table

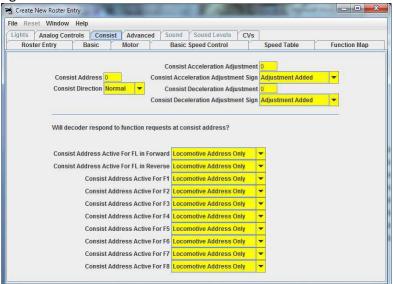

Figure 7 – Analog Controls

Figure 6 – Function Map

Reset Window Help										
	isist A	dvanced	Sound	Sound	Levels	C	Is			
Roster Entry Basic	-	tor		Speed C	100201020		-	peed Table	FI	Inction Map
	-					-			1	
Us	e this she	et to dete	rmine which	ch functi	ons will	contr	ol whic	h outputs		
_										
Description	1	2 3	4	5 6			or ope	ration	5 16 17 19	10 20
			en Vit/Brw		1 0		• • • •	12 13 14 1	5 10 11 10	13 20
Forward Headlight FO(F)										
Reverse Headlight FO(R)										
Function 1										
Function 2										
Function 3										
Function 4										
Function 5										
Function 6										
Function 7										
Function 8										
Function 9										
Function 10										
Function 11										
Function 12										

Figure 8 – Consist

Figure 9 – Advanced

Iile Reset Window Help Lights Analog Controls Consist Advanced Sound Evels CVs Roster Entry Basic Motor Basic Speed Control Speed Table Function Map Advanced Decoder Acknowledgement disabled Packet Time-out Value	Create New Roster Entry	Contraction of the	and spins a	
Roster Entry Basic Motor Basic Speed Table Function Map Advanced Decoder Acknowledgement disabled		und Laurala		
		STATISTICS AND ADDRESS AND ADDRESS ADDR	Speed Table	Function Map

NMRA CV	Purpose	Decoder Pro Tab	Decoder Pro Label(s)
1	Primary Address	Basic	Active DCC Address
			Primary Address
17	Extended Address	Basic	Active DCC Address
			Primary Address
18	Extended Address	Basic	Active DCC Address
			Primary Address
29	Configuration Data	Basic	One byte (short address)
			Address Format
			Locomotive Direction
			FL Location
			Power Source Conversion
		Basic Speed Control	Use Vstart, Vmid, Vhigh
		Speed Table	Use table in CVs 66 through 95
3	Acceleration Rate	Motor	Acceleration Rate

4	Deceleration Rate	Motor	Deceleration Rate
2	Vstart	Basic Speed Control	Vstart
5	Vhigh	Basic Speed Control	Vhigh
6	Vmid	Basic Speed Control	Vmid
7	Manufacturer Version Number	Basic	Manufacturer Version No
8	Manufacturer Version ID	Basic	Manufacturer ID
9	Total PWM Period	Motor	Total PWM Period
10	EMF Feedback Cutout	Motor	EMF Feedback Cutout
11	Packet time-out Value	Advanced	Packet Time-out Value
12	Power Source Conversion	Basic	Power Source Conversion
		Analog Controls	Power Source Conversion
13	Alternate Mode Function Status	Analog Controls	Analog Mode Function Status – F1
			Analog Mode Function Status – F2
			Analog Mode Function Status – F3
			Analog Mode Function Status – F4
			Analog Mode Function Status – F5
			Analog Mode Function Status – F6
			Analog Mode Function Status – F7
			Analog Mode Function Status – F8
15	Decoder Lock	Varies (seems to generally be on t	he Manufacturer-specific
16	Decoder Lock	tab for some reason, even though	NMRA Standard.)
21	Consist Address Active for F1-F8	Consist	Consist Address Active for F1
			Consist Address Active for F2
			Consist Address Active for F3
			Consist Address Active for F4
			Consist Address Active for F5
			Consist Address Active for F6
			Consist Address Active for F7
			Consist Address Active for F8
22	Consist Address Active for FL and	Consist	Consist Address Active for FL (x2)
	F9-F12		Consist Address Active for F9
			Consist Address Active for F10
			Consist Address Active for F11
			Consist Address Active for F12

19	Consist Address	Consist	Consist Address Consist Direction
23	Acceleration Adjustment	Motor	Acceleration Rate
24	Deceleration Adjustment	Motor	Deceleration Rate
25	Speed Table/Mid Range Cab Speed Step	Basic Speed Control	Speed Table/Mid Range Cab Speed Step
33	Output Locations 1-14 for Functions FL(f)	Function Map	Forward Headlight F0(F) row
34	Output Locations 1-14 for Functions FL(r)	Function Map	Forward Headlight FO(R) row
35	Output Locations 1-14 for Functions F1	Function Map	Function 1 row
36	Output Locations 1-14 for Functions F2	Function Map	Function 2 row
37	Output Locations 1-14 for Functions F3	Function Map	Function 3 row
38	Output Locations 1-14 for Functions F4	Function Map	Function 4 row
39	Output Locations 1-14 for Functions F5	Function Map	Function 5 row
40	Output Locations 1-14 for Functions F6	Function Map	Function 6 row
41	Output Locations 1-14 for Functions F7	Function Map	Function 7 row
42	Output Locations 1-14 for Functions F8	Function Map	Function 8 row
43	Output Locations 1-14 for Functions F9	Function Map	Function 9 row
44	Output Locations 1-14 for Functions F10	Function Map	Function 10 row
45	Output Locations 1-14 for Functions F11	Function Map	Function 11 row
46	Output Locations 1-14 for Functions F12	Function Map	Function 12 row

65	Kick Start	Motor	Kick Start
66	Forward Trim	Speed Table	Forward Trim
67	Speed Table 0	Speed Table	Slider
68	Speed Table 9	Speed Table	Slider
69	Speed Table 18	Speed Table	Slider
70	Speed Table 28	Speed Table	Slider
71	Speed Table 37	Speed Table	Slider
72	Speed Table 47	Speed Table	Slider
73	Speed Table 56	Speed Table	Slider
74	Speed Table 66	Speed Table	Slider
75	Speed Table 75	Speed Table	Slider
76	Speed Table 85	Speed Table	Slider
77	Speed Table 94	Speed Table	Slider
78	Speed Table 103	Speed Table	Slider
79	Speed Table 113	Speed Table	Slider
80	Speed Table 122	Speed Table	Slider
81	Speed Table 132	Speed Table	Slider
82	Speed Table 141	Speed Table	Slider
83	Speed Table 151	Speed Table	Slider
84	Speed Table 160	Speed Table	Slider
85	Speed Table 170	Speed Table	Slider
86	Speed Table 179	Speed Table	Slider
87	Speed Table 188	Speed Table	Slider
88	Speed Table 198	Speed Table	Slider
89	Speed Table 207	Speed Table	Slider
90	Speed Table 217	Speed Table	Slider
91	Speed Table 226	Speed Table	Slider
92	Speed Table 236	Speed Table	Slider
93	Speed Table 245	Speed Table	Slider
94	Speed Table 255	Speed Table	Slider
95	Reverse Trim	Speed Table	Reverse Trim
105	User Identification #1	Basic	User Id #1
106	User Identification #2	Basic	User Id #2